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Abstract. We have calculated the quasiparticle energies of sodium and potassium 
clusters using the jellium-sphere-background model for the positive ion cores. The 
electron self-energy is evaluated in first order in the screened Coulomb interaction 
with local field effects included. Results show significant improvements over the 
Kohn-Sham eigenvalues in the local-density-functional theory both for the occupied 
and for the unoccupied quasiparticle states. The theory is found to give the correct 
size dependencies for quasiparticle energies in the finite systems. 

1. Introduction 

Since the experimental mass spectra for sodium clusters were found to be explained 
by the shell structures of valence electrons [I], many theoretical and experimental 
studies on metal clusters have been done. The results confirmed the existence of 
electronic shell structures in the simple-metal clusters [2]. The experimental ionization 
potentials [3] and static polarizabilities [4] as well as the mass spectra for alkali-metal 
clusters show discontinuities at  the shell-closing cluster size obtained theoretically 
using the jellium-sphere-background model [I ,5-71 and the Hohenberg-Kohn-Sham 
local-density-functional approximation (LDA) [8,9]. 

In the jellium-sphere-background model, the positive ion cores in the cluster are 
replaced by a sphere with constant density, which is usually set equal to  the bulk 
valence-electron density. Then, the radius of the sphere for an n-atom cluster is 
~ , n l / ~ ,  where r, is the Wigner-Seitz radius. Interacting valence electrons bound in 
the potential of the jellium sphere are usually treated in the LDA. The calculated 
closed-shell cluster sizes for alkali-metal clusters are n = 2,  8, 18, 20, 34, 40, and so 
on, corresponding to Is, Ip ,  Id ,  2s, If and 2p shell-closing structures. 

In a wide variety of electronic-structure calculations, the LDA eigenvalues, that is 
the eigenvalues of the self-consistent Kohn-Sham equations with the local exchange- 
correlation potential, have often been used to estimate the one-particle energies of 
the interacting electrons (quasiparticle energies). There are, however, considerable 
differences between the LDA eigenvalues and the experimental quasiparticle energies 
both in finite and infinite systems. In the case of infinite bulk semiconductors, for 
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instance, the LDA usually gives band gaps which are too small and, as an extreme 
case, for example, gives a metallic electronic structure for germanium. It has been 
pointed out that not only the LDA but also the ‘true’ exchange-correlation potential, 
although not known, will give smaller band gaps if the Kohn-Sham eigenvalues are 
used for the quasiparticle energies [10,11]. In the LDA calculation for atoms, the 
highest-occupied states are too shallow to give an accurate estimate of the measured 
first ionization potentials. The LDA lowest-unoccupied states are, on the other hand, 
too deep to  give the correct electron affinities of atoms. The LDA eigenvalues for alkali- 
metal clusters have similar problems. Although the LDA occupied-state sequences in 
the jelliumsphere-background model for sodium and potassium clusters are almost 
the same and show good accordance with experimental shell structures, the occupied 
states are too shallow and the unoccupied states are too deep as in the case of atoms. 
Therefore, this problem is not expected to arise from the jellium-sphere-background 
model but from the LDA. 

Recently, for the infinite systems, the Hybertsen-Louie approach [12], which is 
based on the Hedin GW approximation [13,14] and includes local-field effects, has 
been shown to give much better quasiparticle energies than the LDA. In the GW ap- 
proximation, the self-energy operator is given by the product of the electron Green 
function G and the screened Coulomb interaction W .  The Hybertsen-Louie-type 
calculations have been applied not only to semiconductors [12,15-191 but also to met- 
als 120,211, and it gives better accord with experiments than the LDA. Furthermore, 
the GW quasiparticle theory has been found to  work at surfaces and interfaces [22,23]. 

In the present work, we have extended the quasiparticle approach to the closed- 
shell sodium and potassium clusters in the jellium-sphere-background model. (A brief 
report of some of the cluster results has been published [24].) To our knowledge, 
this is the first application of the GW approximation to finite systems. The GW 
approximation in the finite systems is also expected to give much better quasiparticle 
energies than the LDA. In section 2 the general formalism of the GW quasiparticle 
approximation for spherical systems including a new approximate method to  give the 
screened Coulomb interaction W will be reviewed. Results will be given and compared 
to  the experimental quasiparticle energies (ionization thresholds and electron affinities) 
in section 3. The relationship between the present quasiparticle theory and other 
theories will be discussed in section 4.  A brief summary and conclusion will be given 
in section 5 .  

2. Formalism 

2.1.  Quasiparticle energies in the GW approximation 

Even in the interacting many-particle systems, one-particle excitations are often well- 
defined states with long lifetimes and are identified as the quasiparticle states. The va- 
lence electrons in simple-metal clusters are expected to have well-defined one-electron 
states corresponding to  the experimentally observed electronic shell structures. These 
quasiparticle states satisfy the following equation [12,13]: 

where H H ( r )  is the Hartree Hamiltonian consisting of the kinetic energy operator, the 
external potential, and the Hartree potential based on the total electron density. q 5 , ( ~ )  
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and Ej are the quasiparticle wavefunction and the quasiparticle energy, respectively. 
C(T ,  r'; E )  is the energy-dependent non-local self-energy operator. Since the self- 
energy operator is non-Hermitian, the quasiparticle energy Ej is generally complex 
and the quasiparticle state has a finite lifetime. The ImEj is positive and negative for 
occupied and unoccupied states, respectively. 

In the GW approximation, C is given by the first-order term in a perturbation series 
with respect to  the screened Coulomb interaction W .  This corresponds to considering 
the zeroth-order term for the vertex function [13,14]. Then, for non-magnetic systems, 
the self-consistent equations to  be solved are 

[ E - H H ( T 1 ) ] G ( T 1 , T 2 ;  E )  - J d r 3 C ( r 1 , r 3 ; E ) G ( r 3 , r 2 ;  E )  = 6(rl -'2) (5) 

in energy space. Here, II is the irreducible polarization propagator after the spin sum, 
v is the bare Coulomb interaction, and 7 is a positive infinitesimal. 

Within the quasiparticle approximation, the electron Green function is written as 

which, together with (5), gives the quasiparticle equation (1). If we use the time- 
ordered density-density response function x ,  we can rewrite equation (3) for W in a 
closed form 

W ( r l  9 T2; E )  = 2'(T1, T2) + 1 dT3 / dr42)(T1 > T3)X(r31 T4; E)V(T4, .2). (7) 

For a non-magnetic system, x is generally given as 

where wm is the (exact) excitation energy of the mth excited state Im) from the ground 
state IO), and 

"(r) = (OIii(r)lm) = (mlii(r)IO). (9) 

Here, h(r )  is the electron-density operator. Equations (6)-(8) give the useful expres- 
sion for the self-energy operator through a contour integral on the lower half plane 

occ 

E )  = - C 4 j ( r l ) 4 f ( r 2 ) ~ ( f l 1 r 2 ; ~ - ~ i )  
i 

+ ~ m ( . 1 ) v m ( ~ 2 ) ~ ( ~ 1 ,  T ~ ; E  - Wm) 
m 
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where 

V,(r) = ddw(r,  T’)N,(T’), J 
Although only the zeroth-order vertex function is used in the GW approximation, the 
self-consistent equations (2)-(5) are still very complicated for real systems. If we 
can calculate W (or x) and G separately, the quasiparticle energies can be evaluated 
using (1) and (10). To take advantage of this approach, the Green function from the 
LDA will be used for the electron Green function, and x will also be given using the 
time-dependent local-density approximation (TDLDA) [26,27]. 

2.2. Green function in the LDA 

For spherical systems, the Green function can be expanded using Legendre functions 
S 

where 0 is the angle between T~ and r 2 .  Then, within the LDA, Gl is given by [26,27] 

where r< = min(r,, r 2 )  and r> = max(rl, r z ) ,  and the denominator is the Wronskian 
independent of r .  j ,  and h, are the solutions of the boundary-value problem of the 
Schrodinger equation with the LDA effective potential. We calculate the retarded 
Green function GP by (13) with the boundary conditions that j ,  is to be regular as 
r + 0 and that h, is to be an outgoing wave as r ---$ 03. If necessary, GR can be 
converted to its time-ordered function G by 

GR(r , T ‘ ;  E )  
GR*(r’, T ;  E )  

( E  > P )  
( E  I P> 

G(T,  T ’ ;  E )  = (14) 

where p is the highest-occupied-state energy in the LDA. 

2.3. TDLDA density-density response function 

Usually, in the TDLDA, the retarded density-density response function xR is consid- 
ered [26,27]. (x = xR for E 2 0 and x = xR* for E < 0.) The TDLDA xR is given 
by 

where xo is the (retarded) Kohn-Sham independent-particle density-density response 
function and the kernel I< is given as 
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Here, p is the electron density and V,, is the (local) exchange-correlation potential. 
In the present work, Wigner's interpolation formula [28] is used for the correlation 
energy. Equation (15) has been derived from the self-consistent effective-field concept 
as in the case of the random-phase approximation (RPA). In the TDLDA, however, 
the interaction between electrons is considered to  be K ( r , r ' )  rather than V ( T ,  r ' )  in 
the RPA. Therefore, the TDLDA is expected to  include the vertex correction t o  some 
extent . 

The TDLDA xo is given as 
occ 

~'(r1,rz; E )  = 2 C [ i j ( r , ) ~ t ( f l ) G R ( f l , ~ : , ;  E ~ + E ) + ~ ~ ( . ~ ) ~ C I T ( . ~ ) G ~ * ( T ~ , T ~ ; E ~ - E ) ]  

(17) 
i 

where ci and ii are the eigenvalues and the eigenfunctions of the LDA Kohn-Sham 
equation, respectively. Equations (15)- 
(17) enable us to  calculate X ( T ,  r'; E )  for a given energy E.  It is, however, still not 
straightforward to  calculate the excitation spectrum w, and N ,  (or V,), which are 
necessary in order t o  evaluate the self-energy operator C from (10). 

In the present work, we use a new formalism to calculate w, and Nm from the 
(TDLDA) temperature density-density response function xT(r l ,  T:,;  iy) (as the temper- 
ature T + 0). The method has been presented previously [24] and will be discussed in 
more detail elsewhere [29]. x T ( r , ,  T:,;  iy) with positive y is the analytic continuation 
of xR(r1,  T: , ;  E ) .  Therefore, the TDLDA xT can be calculated in the same way as the 
TDLDA xR. The basic assumption used in the new formalism is that the matrix N 
([NI,,. = N , ( r ) )  is square (square-matrix approximation). Then, the x T ( r l ,  T: , ;  iy) 
a t  two different points y = y1 and yz are necessary and sufficient to  determine w, and 

Since the density-functional theory, in principle, gives us the exact static ground- 
state properties, the LDA x(rl, r z ;  0) is expected to  be fairly accurate. We therefore 
use very small y1 (0.01 Ryd). (yl=O cannot be used in the present TDLDA procedure 
since both the first and the second term in (17) diverge for zero energy, although they, 
in principle, must cancel each other t o  give the finite value for the static x'.) On the 
other hand, y:, should be comparable to the important excitation energies, that  is w, 
with large oscillator strengths (cf. equation (16) in [24]). Such important excitations 
are, in general, the collective modes. In the case of metal clusters, the collective modes 
are expected t o  be the surface plasma resonances and to  have energies comparable to  
(but less than) the bulk plasmon energy [30-331. The bulk plasmon energies for 
potassium and sodium are 0.3 N 0.4 Ryd. Therefore, yz = 0.5 Ryd will be used 
here. Using these y1 and y:, values, the square-matrix approximation is found to  give 
energies and strengths of collective excitations quantitatively very well. Moreover, the 
y1 and y:, dependences of the collective excitations are found t o  be very weak [29]. 
Since the collective excitations have dominant strengths in the excitation spectra, the 
results of the present paper also have very weak y1 and yz dependences. Another set of 
y1 and yz values, y1=0.05 and y,=0.3 (Ryd), for example, gives quasiparticle energies 
almost identical to  those given in the present paper. (The maximum difference is less 
than 0.1 eV.) 

2.4. Quasiparticle wavefunction 
In the GW quasiparticle calculations for bulk semiconductors, it has been found that  
the LDA wavefunctions approximate the corresponding quasiparticle wavefunctions 

GR is the retarded LDA Green function. 

Nm ( T ) .  
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very well [12]. Therefore, we use the LDA Gi for the quasiparticle wavefunctions d i .  
Then, we can evaluate the quasiparticle energies as 

In the present work, Ei is assumed t o  be real. 
Since the similarity between the LDA wavefunctions and the GW quasiparticle 

wavefunctions in finite systems may be different from that  of the bulk infinite case, 
we have estimated the difference between the LDA Gi and the GW di in the following 
way. Using matrix notation, the quasiparticle equation is written as 

[HH + X(Ei)]q5i = Eid i .  (19) 

To estimate di  by (19), we have used X ( E i )  given by (10) and (18). Then, di is given 
as the eigenvector of the matrix HH + X ( E i ) .  We have confirmed that  +j calculated 
in this way is very close t o  G i .  In most cases, the overlap Si = is 0.99 or 
even closer t o  unity. In some exceptional cases, Si is less than 0.99 (S1,(Na2)=0.98, 
S,,(Na3,)=0.97, and S,,(K3,)=0.96). Although the origin of these exceptions is not 
clear, q!Ji and $i are still close to  each other. Moreover, even in such cases, Ei evaluated 
using Gi is expected to be very close t o  that using q ! J i ,  since the quasiparticle energy is 
a stationary value as a functional of the quasiparticle wavefunction and has a higher- 
order accuracy than the wavefunctions. 

Since the systems considered have spherical symmetry, we can use the expansion 
in Legendre functions for physical values similar t o  the electron Green function in 
section 2.2.  Several equations in this section are rewritten for spherical systems and 
are given in the appendix. 

3. Results 

3.1. Quasiparticle energies 

In the present work, r,= 4 and 4.86 (a...) are used for Nan and K, respectively. In 
figure 1, the calculated quasiparticle energies for the closed-shell Nan and K, ( n  = 2, 
8, 18, 20, 34, and 40) are given. Within the GW approximation, the electronic shell 
structure sequences are almost the same as in the LDA. A change in the sequences is 
found only in the case of n = 34 (both for Na and K): €1, < cZs while E,, > E2,.  
However, the absolute values of the GW Ej are considerably different from the LDA 
ci. In table 1, the LDA ci and the GW Ei are listed together with the self-interaction 
corrected LDA (SIC) results. The SIC is known to give much better occupied one- 
particle energies for atoms than the LDA [34,35], although the foundation for such an 
approach remains t o  be justified. The SIC results for the Nan and K, in the jellium- 
sphere-background model are improved compared to  the LDA. The SIC one-particle 
states are deeper than in the LDA and the highest-occupied-state ci give much better 
ionization potentials [36]. The occupied GW quasiparticle states are also found to  
be considerably deeper than in the LDA and are expected to  be much better than in 
the LDA. The photoelectron spectra for Nan and K, will give the occupied Ei to  be 
compared t o  the present calculation. 

On the other hand, the unoccupied GW quasiparticle E,, for K,, is shallower than 
the LDA clg.  Therefore, the many-body correction to  the LDA ci has different signs 
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Figure 1. Calculated occupied (full circles) and unoccupied (open circles) quasipar- 
ticle energies of the closed-shell allcali-metal clusters: Nan (left-hand figure) and K, 
(right-hand figure) (n = 2, 8, 18, 20, 34 and 40). 

Table 1. Occupied-state (Is  to 2p) and unoccupied-state (Ig) quasiparticle energies 
for K40 in the jellium-sphere-background model obtained using the LDA,  SIC and the 
current GW approximation (eV). The L D A  and SIC results are also our own values. 

i LDA E ,  SIC E ,  GW E, 

IS -4.3 -4.8 -4.6 
Ip -4.1 -4.5 -4.4 
Id -3.6 -4.0 -4.1 
2s -3.2 -3.7 -3.8 
If -3.1 -3.4 -3.8 
2p -2.5 -3.0 -3.3 

l g  -2.5 -2.8 -2.3 

for the occupied and the unoccupied states, respectively. The bulk semiconductor 
quasiparticle energies also have the same properties [12]. The SIC is expected to  work 
only for the occupied states because the original motivation is to remove the Hartree 
and exchange-correlation contributions coming from the electron itself from the LDA 
effective potential for each electron. Actually, the SIC unoccupied-state energy elg for 
K,, is even deeper than the LDA elg which is already too deep. 

3.2. Ionization potentials 

Since the quasiparticle energies are defined as the energy changes when one electron is 
added or removed from the system, the absolute values of the highest-occupied-state 
energies (EHo) correspond to  the first ionization potentials. In figure 2 ,  [EHo[ for 
Nan and K, are compared with the LDA IcHOI, to the ionization potentials calculated 
as the LDA total-energy difference between the Na; (K;) and the Nan (Kn) ,  and to 
the experimental photoionization thresholds [2,37-391. In both Nan and K,, the GW 
lEHol are found to be much larger than the LDA leHO/ and follow the total-energy 
differences very closely. The LDA total-energy difference is expected to give rather 



9048 S Saito et a1 

accurate ionization potentials for jellium spheres as in the case of atoms. Therefore, 
the GW EH, is expected to  be very close to  the ideal values for the jellium spheres. 

X 

10 20 30 40 
NUMBER OF ATOMS PER CLUSTER, n 

6 

5 

h z 
v 

i 4  
w 
z w 

3 

2 

Y 

10 20 30 40 
NUMBER OF ATOMS PER CLUSTER, n 

Figure 2. The absolute values of the quasiparticle energies of the highest-occupied 
states in sodium (left-hand figure) and potassium (right-hand figure) clusters ob- 
tained using the LDA (open circles) and the GW approximation (full circles). The 
crosses represent the LDA total-energy differences between the positive (Nai  and 
KA) and the neutral clusters (Nan and K,,). The experimental ionization thresholds 
are given by the triangles (data from [2,37-391). 

The GW [EHo\ is found to  have much stronger size dependence than the LDA 
IcHOI. The smaller clusters have larger lEHol in accord with the size dependence of the 
experimental photoionization thresholds. The experimental ionization thresholds are, 
in general, smaller than the GW lEHol. In the case of real clusters, the non-spherical 
potential from the ion cores will lift the degeneracy of the highest-occupied states 
and will give a new position for the highest-occupied state, which will be shallower 
than the original one in the case of closed-shell clusters. Therefore, the remaining 
discrepancy between the GW lEHol and the experimental photoionization thresholds 
probably arises form the jellium-sphere-background model. (It may also come from 
the finite-temperature effect in the experiment. The hotter clusters are believed to  
have lower ionization thresholds [2,39].) 

3.3. Electron afinities 

The absolute values of the lowest-unoccupied quasiparticle energies, [E,, I correspond 
to  the the electron affinities of the clusters. In figure 3, the GW lELul and the LDA 
IcLU( are given. The  LDA total-energy differences between the Na, (K,) and the Na; 
(K,) are also given in figure 3. For smaller negative clusters (n = 2 and 8), however, 
the LDA calculation is impossible since the highest-occupied states become extended 
states. 

As in the case of K40, the GW lELul are always smaller than the LDA lcLUl and 
are closer to  the total-energy differences. As for the experimental electron affinities 
of Na, and K,, only a few results are available. The recent photoelectron spectra of 
Na; and K, have given 0.430 k 0.015 and 0.493* 0.012 (eV) as the electron affinities 
of Na, and K,, respectively, in good accord with the present GW ,TIP. 
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Figure 3. The absolute values of the quasiparticle energies of the lowest-unoccupied 
states in sodium (left-hand figure) and potassium (right-hand figure) clusters ob- 
tained using the LDA (open circles) and the G W  approximation (full circles). The 
LDA total-energy differences between the neutral (Nan and Kn)  and the negative 
clusters (Na, and K,) are given by the crosses. The LDA calculation is not possible 
for smaller negative clusters (n = 2 and 8). The experimental electron affinities for 
Naz and Kz are given by the triangles (data from [40]). 

4. Discussion 

The  present work has verified that the LDA wavefunctions in finite systems as well as in 
infinite systems are very good quasiparticle wavefunctions, even though the LDA Kohn- 
Sham eigenvalues are rather poor approximations for quasiparticle energies. This 
result is consistent with the fact that  the SIC works in finite systems in spite of the fact 
that  its basic assumption is not well-founded. In the SIC formalism, the Kohn-Sham 
eigenfunctions are treated as if they are the one-particle (quasiparticle) wavefunctions 
in the interacting many-electron systems, even though they are the wavefunctions of 
hypothetical non-interacting systems. (The LDA and the SIC wavefunctions are very 
close to  each other in the finite systems.) 

Once we regard the LDA wavefunctions as quasiparticle wavefunctions, the Hartree 
potential for each particle in the Kohn-Sham equations involves the Coulomb potential 
from the particle itself. In the Hartree-Fock approximation (HF), this self-Coulomb- 
potential term is cancelled out by the counter term in the exchange potential, while 
the cancellation is not complete in the LDA formalism. The self-interaction problem in 
the LDA is more serious in smaller systems, and conceals the strong size dependence of 
the highest-occupied-state energies. The present quasiparticle calculation for alkali- 
metal clusters has revealed the generality and the usefulness of the GW approximation 
even for the finite systems. The calculated quasiparticle energies give the correct size 
dependencies. The GW approximation is, in principle, a more improved method than 
the HF, since the HF corresponds to  the 'GHFu' approximation (the exchange term is 
given by the product of the Green function GHF and the bare Coulomb interaction). 
Therefore, the GW approximation is free from the self-interaction correction. 

For clusters, the quasiparticle energies for the lowest-unoccupied states are found 
to  give reasonable electron affinities. It is often difficult t o  calculate the total energies 
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of the negatively charged systems. In finite systems, the highest occupied states of the 
negative systems are in general diffusive as in the case of Nan, K,, Na, and K,. This 
is a serious problem in the LDA. Therefore, it is more difficult to  calculate the electron 
affinities than the ionization potentials. Thus, the GW quasiparticle approximation is 
a powerful tool for calculating the electron affinities and the excitation energies of an 
electron to  the higher states. 

In the present calculation, the quasiparticle energies are assumed to be real. It 
is, however, a very interesting problem to determine the lifetime of quasiparticles 
in alkali-metal clusters. Neither the density-functional theory nor quantum-chemical 
calculations, including the HF and the configuration interaction method, gives the 
lifetime of the quasiparticle. The calculation of the complex quasiparticle energies 
in the GW approximation (or beyond the GW) would reveal more of the validity and 
the limitations of the shell concept for alkali-metal clusters. Furthermore, unlike the 
SIC, the GW quasiparticle method is a well-founded approximation based on standard 
many-body theory. Therefore, further improvement is possible if necessary. 

5. Summary and conclusion 

In this work, we have calculated the quasiparticle energies of sodium and potassium 
clusters in the GW approximation for the self-energies of the valence electrons with 
the jellium-sphere-background model for ion cores, The occupied quasiparticle states 
obtained are considerably deeper than the LDA eigenstates, giving much better ioniza- 
tion potentials with the correct size dependence. The lowest-unoccupied quasiparticle 
states are, on the other hand, shallower than in the LDA and also give better electron 
affinities. Therefore, the GW approximation as implemented is found to describe quan- 
titatively the one-particle properties in finite systems as well as in extended systems. 
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Appendix 

In spherical systems, physical values can be expanded using Legendre functions P,. We 
summarize here the equations for calculating the quasiparticle energies for spherical 
systems. 
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The LDA independent-particle density-density response function is given by 

k=O 

where [41,42] 

a1i-kakal-k 21 + 21‘ - 4k + 1 
21 + 21’ - 2k + 1 AII’k = 

aI+l’-k 

(2n - l)!! 
n! 

a, = (‘4.3) 

and R,, is the radial-part LDA wavefunction. GI is the LDA Green function discussed 
in subsection 2.2. The TDLDA density-density response function satisfies 

xIR(r1, rz; E )  = xP(r1 1’2; E )  

+ lm dr, dr4(r3r4)2x?(r1, r3 ;  E)Kl(r3i T4)xp(r41rZ; E)‘ (A.4) 

By the square-matrix approximation (subsection 2.3), $(r,r’; iy,) and xp( r l  r’; iyz) 
give the excitation energies wnI and 

VnI(r) = iw dr’(r’)2q(r, r’)Nnl(r’) .  

Then, we can evaluate the screened Coulomb interaction as 

(‘4.5) 

The self-energy is given by 

Using the above self-energy operator, the quasiparticle energies are calculated self- 
consistently from 

00 

En, = f n l -  1 drrzRnl(r)KcRn/(r) 
rm roo 

dr’( rr’)’ RnI ( r)CI ( r ,  r’; Enl) Rnl( r’) .  +J,  d r l o  
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In the actual calculation, all the functions of r (and r’) are evaluated numerically 
on a discrete grid with uniform distance ( A r  = 0.4 au). The final grid point ( rmax)  
in each case is determined from the condition VXc(r,,,) < (Ryd). The cut-off 
angular momentum, I,, is also introduced for the sum over U,, in (A.7).  Results given 
in the present paper are converged with respect to Ar,  r,,, and I, within 0.1 (ev).  
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